ارتقای سطح کارائی مدیریت سرمایه گذاری دربازارسرمایه ایران با استفاده ازشبکه عصبی مصنوعی و منطق فازی
author
Abstract:
تخصیص بهینه منابع مالی یکی ازمهمترین مسا ئل بازار سرمایه است. در یک بازار سرمایه کارا از بعد عملیاتی ،سرمایه در اختیار بهترین گزینه های سرمایه گذاری قرار میگیرد. بنابراین استفاده ازابزارهای مدیریت مناسب جهت کسب بازدهی بیشتر،گامی در راستای کاراترشدن مدیریت معاملات بازاراست. با توجه به زمینه های استفاده از شبکه های عصبی و منطق فازی در سرمایه گذاری سهام و پیش بینی مالی ،بکارگیری آنها در انتخاب پر تفوی مناسب می تواند نتایج مطلوبی برای سرمایه گذاران در پی داشته باشد.هدف اصلی این پژوهش دستیابی به پرتفوی سرمایه گذاری بهینه دربازارسرمایه بابکارگیری شبکه عصبی مصنوعی ومنطق فازی است. همراه بامدل مارکویتز،ازمدلهای ایجادشده طریق شبکه عصبی مصنوعی ومدل فازی استفاده گردید.از شرکتهای فعال در بورس اوراق بهادارتهران، که از سال 1386الی 1395 دارای بازده مثبت بوده اند برای تشکیل پرتفوی سرمایه گذاری انتخاب شدند.برای ارزیابی پرتفو های پیشنهادی در حالت های مختلف، به مقایسه بازده پرتفو های مختلف بر اساس بازده ماهیانه وسالیانه شرکت های عضووبهینه سازی پرتفوهای پیشنهادی بااستفاده ازالگوریتم ژنتیک پرداخته شده است. این تحقیق نشان میدهدکه استفاده ازمدلهای فازی نسبت به مدلهای مذکوربازدهی بالاتری رابرای سرمایه گذاران فراهم می نماید.
similar resources
برآورد بازار کار با استفاده ازشبکه عصبی فازی
در این مقاله یک روش جدید براساس شبکه عصبی فازی برای برآورد ضرایب فازی یک تابع عرضه و تقاضای نیروی کار با ورودیها و خروجیهای فازی، ارائه میشود. در بازار کار میزان دستمزد افراد و تولید ناخالص داخلی به صورت کلمات مبهم و یا فازی می باشند بنابراین لازم است این دادهها توسط رگرسیون فازی برآورد گردند و ضرایب این رگرسیون توسط شبکه عصبی فازی صورت می گیرد. برای تقریب پارامترها، یک الگوریتم در نظر گرف...
full textبرآورد بازار کار با استفاده ازشبکه عصبی فازی
در این مقاله یک روش جدید براساس شبکه عصبی فازی برای برآورد ضرایب فازی یک تابع عرضه و تقاضای نیروی کار با ورودیها و خروجیهای فازی، ارائه میشود. در بازار کار میزان دستمزد افراد و تولید ناخالص داخلی به صورت کلمات مبهم و یا فازی می باشند بنابراین لازم است این دادهها توسط رگرسیون فازی برآورد گردند و ضرایب این رگرسیون توسط شبکه عصبی فازی صورت می گیرد. برای تقریب پارامترها، یک الگوریتم در نظر گرف...
full textمدلسازی آبشستگی اطراف آبشکن در قوسها با استفاده از منطق فازی و شبکه عصبی مصنوعی
آبشکن سازهای است از جنس سنگ، شن، پاره سنگ، خاک و یا بتن که با زاویهای نسبت به کرانه رودخانه جهت انحراف جریان آب از سواحل به مرکز آن به منظور جلوگیری از آبشستگی سواحل احداث میشود. از جمله مشکلات مهم مربوط به این سازه که ممکن است پایداری آن را به خطر اندازد، آبشستگی اطراف آن میباشد. لذا مدلسازی میزان آبشستگی اطراف این سازه بر اساس شرایط جریان از اهمیت بالایی برخوردار میباشد. در این تحقیق د...
full textبرآورد بازار کار با استفاده ازشبکه عصبی فازی
در این مقاله یک روش جدید براساس شبکه عصبی فازی برای برآورد ضرایب فازی یک تابع عرضه و تقاضای نیروی کار با ورودی ها و خروجی های فازی، ارائه می شود. در بازار کار میزان دستمزد افراد و تولید ناخالص داخلی به صورت کلمات مبهم و یا فازی می باشند بنابراین لازم است این داده ها توسط رگرسیون فازی برآورد گردند و ضرایب این رگرسیون توسط شبکه عصبی فازی صورت می گیرد. برای تقریب پارامتر ها، یک الگوریتم در نظر گرف...
full textبرآورد مقدارکربن آلی کل با استفاده ازشبکه عصبی مصنوعی در میدان نفتی بینک، استان بوشهر
مقدار کربن آلی کل (Total Organic Carbon) موجود در سنگ منشأ هیدروکربن یکی از پارامترهای حائز اهمیت در ارزیابی آن است. این پارامتر نه تنها در مطالعات ژئوشیمیایی هیدروکربن مورد استفاده قرار میگیرد، بلکه در بررسی میزان گسترش سنگ منشأ نیز نقش بسزایی دارد به گونهای که با افزایش TOC، احتمال حضور سنگ منشأ افزایش مییابد وکاهش آن بیانگر عدم گستردگی سنگ منشأ در یک ژرفای معلوم است. بنابراین وجود ر...
full textتولید شتابنگاشت مصنوعی زلزله با استفاده از شبکه عصبی فازی
نیاز روزافزون به تحلیل دینامیکی تاریخچه زمانی و عدموجود شتابنگاشتهای مناسب در مناطق مختلف، تولید شتابنگاشتهای مصنوعی سازگار با طیف طرح را ضروری میسازد. هدف اصلی این تحقیق ارائه روشی نوین، بر اساس تبدیل بسته موجک و روش های هوش مصنوعی برای تولید شتابنگاشت مصنوعی زلزله سازگار با طیف طرح بر اساس مقدار بزرگا، فاصله از گسل و طیف مربوطه می باشد. در این تحقیق از شبکه های عصبی فازی و آنالیز موجک پک...
full textMy Resources
Journal title
volume 8 issue 31
pages 285- 316
publication date 2019-09-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023